[AWS] SageMaker에서 S3 버킷에 저장된 학습 데이터 사용하기

이전 포스트에서는 AWS에서 자체 제공하는 기계 학습 플랫폼인 SageMaker를 사용하여 기계 학습 환경을 구축해봤는데요.


SageMaker에서 기계 학습 시 로컬 디렉토리나 다운로드 받은 기계 학습 데이터를 사용하는 것이 아닌 S3 버킷에 저장된 기계 학습 데이터를 사용하여 기계 학습을 실행할 수 있도록 해보겠습니다.

 

이전이 작성한 포스트인 Amazon SageMaker를 사용하여 기계 학습 환경을 구축하는 방법을 기준으로 진행하는 작업이므로 이전 포스트를 사전에 확인 후 작업하시면 더 도움이 될 것 같습니다.

 

 


SageMaker S3 버킷 확인

SageMaker Studio에서 Jupyter Notebook을 통해 Session 생성 시 Default S3 버킷이 생성됩니다.


아래 명령어를 통해 Default S3 버킷 이름을 확인하실 수 있습니다.

import sagemaker

#========== 기본설정 ==========
# Session 생성
sagemaker_session = sagemaker.Session()

# Amazon S3 bucket 이름
s3_bucket_name = sagemaker_session.default_bucket()

# Amazon S3 bucket 출력
print (s3_bucket_name)

 

 


기계 학습 데이터 S3 버킷 업로드

기계 학습 데이터는 COCO 데이터 셋을 사용하도록 하겠습니다.


SageMaker Default S3 버킷에 폴더를 생성 후 COCO 데이터 셋을 업로드 합니다.


업로드 작업은 AWS Console에서 작업하거나 AWS CLI를 통해 S3 버킷에 기계 학습 데이터를 업로드 할 수 있습니다.

 

AWS CLI 예시

# aws s3 cp {{기계 학습 데이터}}  s3://{{S3 버킷 URL}}/coco128/images/.

 

 


기계 학습 코드

 

기계 학습 코드 - 기본 설정

SageMaker Default S3 버킷을 확인하고 COCO 데이터 셋 경로와 모델 저장 경로를 설정합니다.

import sagemaker

#========== 기본설정 ==========
# Session 생성
sagemaker_session = sagemaker.Session()

# Amazon S3 bucket 이름
s3_bucket_name = sagemaker_session.default_bucket()

# IAM role
role = sagemaker.get_execution_role()


#========== 학습 설정 ==========
# 데이터셋 경로
dataset_path = 'coco128'

# 모델 저장 경로
output_path = 'coco128/train'

# S3 bucket 데이터셋 경로
s3_dataset_path = f's3://{s3_bucket_name}/{dataset_path}'

# S3 bucket 모델 저장 경로
s3_output_path = f's3://{s3_bucket_name}/{output_path}'


# Estimator 설정
est_pytorch_entry_point= 'train.py'
est_pytorch_image_uri = '{ECR_URL}/sagemaker:pytorch-training-2.0.0-gpu-py310-cu118-ubuntu20.04-sagemaker'
est_pytorch_framework_version = '2.0.0'
est_pytorch_py_version = 'py310'
est_pytorch_instance_type = 'ml.g4dn.xlarge'
est_pytorch_instance_count = 1
est_pytorch_source_dir = './'

# Hyperparameters 설정
est_pytorch_hyperparameters={
    'data': 'coco128.yaml',
    'cfg': 'yolov5s.yaml',
    'epochs': 3,
    'project' : '/opt/ml/model',
    'batch-size': 8
}

 

  1. SageMaker Default S3 버킷 이름을 설정합니다.
    • s3_bucket_name = sagemaker_session.default_bucket()
  2. S3 버킷관련 경로 설정을 추가합니다.
    • 데이터셋 경로 : dataset_path = 'coco128'
    • 모델 저장 경로 : output_path = 'coco128/train'
    • S3 bucket 데이터셋 경로 : s3_dataset_path = f's3://{s3_bucket_name}/{dataset_path}'
    • S3 bucket 모델 저장 경로 : s3_output_path = f's3://{s3_bucket_name}/{output_path}'

 

 

기계 학습 코드 - 입력 데이터 채널 및 Estimator 생성

기계 학습 입력 데이터 채널을 생성하고, 모델 저장 경로를 Estimator 생성 시 설정합니다.

from sagemaker.pytorch import PyTorch
from sagemaker.inputs import TrainingInput

# 입력 데이터 채널 (기계 학습 데이터)
data_inputs = TrainingInput(s3_data=s3_dataset_path, content_type='application/x-image')

# Estimator 생성
pytorch_estimator = PyTorch(
    entry_point=est_pytorch_entry_point,
    image_uri=est_pytorch_image_uri,
    framework_version=est_pytorch_framework_version,
    py_version=est_pytorch_py_version,
    instance_type=est_pytorch_instance_type,
    instance_count=est_pytorch_instance_count,
    source_dir=est_pytorch_source_dir,
    output_path=s3_output_path,
    train_output=s3_output_path,
    sagemaker_session=sagemaker_session,
    role=role,
    hyperparameters=est_pytorch_hyperparameters
)

 

  1. 사전에 S3 버킷에 업로드한 기계 학습 데이터를 사용할 수 있도록 기계 학습 입력 데이터 채널을 생성합니다.
  2. Estimator 생성 시 output_path, train_output 옵션을 추가하여 모델 저장 경로를 설정합니다.

 

 

기계 학습 코드 - 학습 시작

사전에 생성한 기계 학습 입력 데이터 채널을 기계 학습 시작 시 사용하는 .fit() 함수에 추가합니다.

# 학습 시작
pytorch_estimator.fit(inputs=data_inputs)

 

 

 

기계 학습 코드 - 데이터 셋 경로 설정 변경

S3 버킷을 통해 기계 학습 데이터 다운로드 시 기본 경로인 /opt/ml/input/data 경로에 데이터가 다운로드 됩니다.


coco128.yaml 파일을 사용하여 데이터 셋을 정의하고 있으며 해당 파일의 경로 설정을 변경하여 S3 버킷을 통해 다운로드 받은 기계 학습 데이터를 사용할 수 있도록 수정합니다.

# 기존
path: ../datasets/coco128  # dataset root dir
# 수정
path: /opt/ml/input/data/training

 

 


기계 학습 코드 실행

작성한 기계 학습 코드를 실행해보도록 하겠습니다.

 

Estimator의 fit 함수를 실행합니다.

 

 

 

기존에는 학습 데이터를 저장하고 있지 않았기 때문에 기계 학습 데이터를 다운로드 받으며,

S3 버킷의 기계 학습 데이터를 사용할 경우 데이터 셋을 확인하여 이후 작업을 진행합니다.

  • 기존

 

  • S3 버킷 기계 학습 데이터 사용

 

 

 

S3 버킷의 기계 학습 데이터를 사용하기 때문에 기계 학습 시간도 단축됩니다.

  • 기존 (427)

 

  • S3 버킷 기계 학습 데이터 사용 (363초)

 

 

  • 기계 학습 완료 시 사전에 설정한 모델 저장 경로에 모델 파일이 저장되어 있는지 저장 경로를 확인할 수 있습니다.

 

  • S3 버킷에 직접 접속 후 기계 학습이 완료된 모델 파일을 확인하시기 바랍니다.

 

 

전체 학습 상세 로그는 아래 버튼을 클릭하여 확인하시기 바랍니다.

학습 상세 로그
Using provided s3_resource
INFO:sagemaker:Creating training-job with name: sagemaker-2023-07-04-07-46-10-310
2023-07-04 07:46:13 Starting - Starting the training job...
2023-07-04 07:46:28 Starting - Preparing the instances for training......
2023-07-04 07:47:31 Downloading - Downloading input data...
2023-07-04 07:48:01 Training - Downloading the training image...........................
2023-07-04 07:52:27 Training - Training image download completed. Training in progress.bash: cannot set terminal process group (-1): Inappropriate ioctl for device
bash: no job control in this shell
2023-07-04 07:52:37,314 sagemaker-training-toolkit INFO     Imported framework sagemaker_pytorch_container.training
2023-07-04 07:52:37,331 sagemaker-training-toolkit INFO     No Neurons detected (normal if no neurons installed)
2023-07-04 07:52:37,340 sagemaker_pytorch_container.training INFO     Block until all host DNS lookups succeed.
2023-07-04 07:52:37,345 sagemaker_pytorch_container.training INFO     Invoking user training script.
2023-07-04 07:52:39,710 sagemaker-training-toolkit INFO     Installing dependencies from requirements.txt:
/opt/conda/bin/python3.10 -m pip install -r requirements.txt
Collecting gitpython>=3.1.30 (from -r requirements.txt (line 5))
Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.3/184.3 kB 12.4 MB/s eta 0:00:00
Requirement already satisfied: matplotlib>=3.3 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 6)) (3.7.1)
Requirement already satisfied: numpy>=1.18.5 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 7)) (1.23.5)
Requirement already satisfied: opencv-python>=4.1.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 8)) (4.7.0)
Requirement already satisfied: Pillow>=7.1.2 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 9)) (9.4.0)
Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 10)) (5.9.5)
Requirement already satisfied: PyYAML>=5.3.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 11)) (5.4.1)
Requirement already satisfied: requests>=2.23.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 12)) (2.28.2)
Requirement already satisfied: scipy>=1.4.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 13)) (1.10.1)
Collecting thop>=0.1.1 (from -r requirements.txt (line 14))
Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB)
Requirement already satisfied: torch>=1.7.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 15)) (2.0.0)
Requirement already satisfied: torchvision>=0.8.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 16)) (0.15.1)
Requirement already satisfied: tqdm>=4.64.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 17)) (4.65.0)
Collecting ultralytics>=8.0.111 (from -r requirements.txt (line 18))
Downloading ultralytics-8.0.125-py3-none-any.whl (612 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 612.5/612.5 kB 80.2 MB/s eta 0:00:00
Requirement already satisfied: pandas>=1.1.4 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 27)) (2.0.1)
Requirement already satisfied: seaborn>=0.11.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 28)) (0.12.2)
Requirement already satisfied: setuptools>=65.5.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 42)) (65.6.3)
Collecting gitdb<5,>=4.0.1 (from gitpython>=3.1.30->-r requirements.txt (line 5))
Downloading gitdb-4.0.10-py3-none-any.whl (62 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 21.5 MB/s eta 0:00:00
Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (1.0.7)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (4.39.4)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (1.4.4)
Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (23.1)
Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (2.8.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (3.1.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (3.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (1.26.15)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (2023.5.7)
Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.12.0)
Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (4.5.0)
Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (1.11.1)
Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.1)
Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.1.2)
Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas>=1.1.4->-r requirements.txt (line 27)) (2023.3)
Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.10/site-packages (from pandas>=1.1.4->-r requirements.txt (line 27)) (2023.3)
Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython>=3.1.30->-r requirements.txt (line 5))
Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=3.3->-r requirements.txt (line 6)) (1.16.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=1.7.0->-r requirements.txt (line 15)) (2.1.2)
Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch>=1.7.0->-r requirements.txt (line 15)) (1.3.0)
Installing collected packages: smmap, gitdb, thop, gitpython, ultralytics
Successfully installed gitdb-4.0.10 gitpython-3.1.31 smmap-5.0.0 thop-0.1.1.post2209072238 ultralytics-8.0.125
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
2023-07-04 07:52:42,410 sagemaker-training-toolkit INFO     Waiting for the process to finish and give a return code.
2023-07-04 07:52:42,411 sagemaker-training-toolkit INFO     Done waiting for a return code. Received 0 from exiting process.
2023-07-04 07:52:42,428 sagemaker-training-toolkit INFO     No Neurons detected (normal if no neurons installed)
2023-07-04 07:52:42,453 sagemaker-training-toolkit INFO     No Neurons detected (normal if no neurons installed)
2023-07-04 07:52:42,477 sagemaker-training-toolkit INFO     No Neurons detected (normal if no neurons installed)
2023-07-04 07:52:42,485 sagemaker-training-toolkit INFO     Invoking user script
Training Env:
{
    "additional_framework_parameters": {},
    "channel_input_dirs": {
        "training": "/opt/ml/input/data/training"
    },
    "current_host": "algo-1",
    "current_instance_group": "homogeneousCluster",
    "current_instance_group_hosts": [
        "algo-1"
    ],
    "current_instance_type": "ml.g4dn.xlarge",
    "distribution_hosts": [],
    "distribution_instance_groups": [],
    "framework_module": "sagemaker_pytorch_container.training:main",
    "hosts": [
        "algo-1"
    ],
    "hyperparameters": {
        "batch-size": 8,
        "cfg": "yolov5s.yaml",
        "data": "coco128.yaml",
        "epochs": 3,
        "project": "/opt/ml/model/"
    },
    "input_config_dir": "/opt/ml/input/config",
    "input_data_config": {
        "training": {
            "ContentType": "application/x-image",
            "TrainingInputMode": "File",
            "S3DistributionType": "FullyReplicated",
            "RecordWrapperType": "None"
        }
    },
    "input_dir": "/opt/ml/input",
    "instance_groups": [
        "homogeneousCluster"
    ],
    "instance_groups_dict": {
        "homogeneousCluster": {
            "instance_group_name": "homogeneousCluster",
            "instance_type": "ml.g4dn.xlarge",
            "hosts": [
                "algo-1"
            ]
        }
    },
    "is_hetero": false,
    "is_master": true,
    "is_modelparallel_enabled": null,
    "is_smddpmprun_installed": true,
    "job_name": "sagemaker-2023-07-04-07-46-10-310",
    "log_level": 20,
    "master_hostname": "algo-1",
    "model_dir": "/opt/ml/model",
    "module_dir": "s3://####################/sagemaker-2023-07-04-07-46-10-310/source/sourcedir.tar.gz",
    "module_name": "train",
    "network_interface_name": "eth0",
    "num_cpus": 4,
    "num_gpus": 1,
    "num_neurons": 0,
    "output_data_dir": "/opt/ml/output/data",
    "output_dir": "/opt/ml/output",
    "output_intermediate_dir": "/opt/ml/output/intermediate",
    "resource_config": {
        "current_host": "algo-1",
        "current_instance_type": "ml.g4dn.xlarge",
        "current_group_name": "homogeneousCluster",
        "hosts": [
            "algo-1"
        ],
        "instance_groups": [
            {
                "instance_group_name": "homogeneousCluster",
                "instance_type": "ml.g4dn.xlarge",
                "hosts": [
                    "algo-1"
                ]
            }
        ],
        "network_interface_name": "eth0"
    },
    "user_entry_point": "train.py"
}
Environment variables:
SM_HOSTS=["algo-1"]
SM_NETWORK_INTERFACE_NAME=eth0
SM_HPS={"batch-size":8,"cfg":"yolov5s.yaml","data":"coco128.yaml","epochs":3,"project":"/opt/ml/model/"}
SM_USER_ENTRY_POINT=train.py
SM_FRAMEWORK_PARAMS={}
SM_RESOURCE_CONFIG={"current_group_name":"homogeneousCluster","current_host":"algo-1","current_instance_type":"ml.g4dn.xlarge","hosts":["algo-1"],"instance_groups":[{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}],"network_interface_name":"eth0"}
SM_INPUT_DATA_CONFIG={"training":{"ContentType":"application/x-image","RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}}
SM_OUTPUT_DATA_DIR=/opt/ml/output/data
SM_CHANNELS=["training"]
SM_CURRENT_HOST=algo-1
SM_CURRENT_INSTANCE_TYPE=ml.g4dn.xlarge
SM_CURRENT_INSTANCE_GROUP=homogeneousCluster
SM_CURRENT_INSTANCE_GROUP_HOSTS=["algo-1"]
SM_INSTANCE_GROUPS=["homogeneousCluster"]
SM_INSTANCE_GROUPS_DICT={"homogeneousCluster":{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}}
SM_DISTRIBUTION_INSTANCE_GROUPS=[]
SM_IS_HETERO=false
SM_MODULE_NAME=train
SM_LOG_LEVEL=20
SM_FRAMEWORK_MODULE=sagemaker_pytorch_container.training:main
SM_INPUT_DIR=/opt/ml/input
SM_INPUT_CONFIG_DIR=/opt/ml/input/config
SM_OUTPUT_DIR=/opt/ml/output
SM_NUM_CPUS=4
SM_NUM_GPUS=1
SM_NUM_NEURONS=0
SM_MODEL_DIR=/opt/ml/model
SM_MODULE_DIR=s3://####################/sagemaker-2023-07-04-07-46-10-310/source/sourcedir.tar.gz
SM_TRAINING_ENV={"additional_framework_parameters":{},"channel_input_dirs":{"training":"/opt/ml/input/data/training"},"current_host":"algo-1","current_instance_group":"homogeneousCluster","current_instance_group_hosts":["algo-1"],"current_instance_type":"ml.g4dn.xlarge","distribution_hosts":[],"distribution_instance_groups":[],"framework_module":"sagemaker_pytorch_container.training:main","hosts":["algo-1"],"hyperparameters":{"batch-size":8,"cfg":"yolov5s.yaml","data":"coco128.yaml","epochs":3,"project":"/opt/ml/model/"},"input_config_dir":"/opt/ml/input/config","input_data_config":{"training":{"ContentType":"application/x-image","RecordWrapperType":"None","S3DistributionType":"FullyReplicated","TrainingInputMode":"File"}},"input_dir":"/opt/ml/input","instance_groups":["homogeneousCluster"],"instance_groups_dict":{"homogeneousCluster":{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}},"is_hetero":false,"is_master":true,"is_modelparallel_enabled":null,"is_smddpmprun_installed":true,"job_name":"sagemaker-2023-07-04-07-46-10-310","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://####################/sagemaker-2023-07-04-07-46-10-310/source/sourcedir.tar.gz","module_name":"train","network_interface_name":"eth0","num_cpus":4,"num_gpus":1,"num_neurons":0,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_group_name":"homogeneousCluster","current_host":"algo-1","current_instance_type":"ml.g4dn.xlarge","hosts":["algo-1"],"instance_groups":[{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}],"network_interface_name":"eth0"},"user_entry_point":"train.py"}
SM_USER_ARGS=["--batch-size","8","--cfg","yolov5s.yaml","--data","coco128.yaml","--epochs","3","--project","/opt/ml/model/"]
SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate
SM_CHANNEL_TRAINING=/opt/ml/input/data/training
SM_HP_BATCH-SIZE=8
SM_HP_CFG=yolov5s.yaml
SM_HP_DATA=coco128.yaml
SM_HP_EPOCHS=3
SM_HP_PROJECT=/opt/ml/model/
PYTHONPATH=/opt/ml/code:/opt/conda/bin:/opt/conda/lib/python310.zip:/opt/conda/lib/python3.10:/opt/conda/lib/python3.10/lib-dynload:/opt/conda/lib/python3.10/site-packages
Invoking script with the following command:
/opt/conda/bin/python3.10 train.py --batch-size 8 --cfg yolov5s.yaml --data coco128.yaml --epochs 3 --project /opt/ml/model/
2023-07-04 07:52:42,517 sagemaker-training-toolkit INFO     Exceptions not imported for SageMaker TF as Tensorflow is not installed.
#033[34m#033[1mtrain: #033[0mweights=yolov5s.pt, cfg=yolov5s.yaml, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=8, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/opt/ml/model/, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
From https://github.com/ultralytics/yolov5
   0004c74..a453a45  master       -> origin/master
* [new branch]      discord-link -> origin/discord-link
* [new branch]      pre-commit-ci-update-config -> origin/pre-commit-ci-update-config
#033[34m#033[1mgithub: #033[0m⚠️ YOLOv5 is out of date by 2 commits. Use 'git pull' or 'git clone https://github.com/ultralytics/yolov5' to update.
YOLOv5 🚀 v7.0-187-g0004c74 Python-3.10.8 torch-2.0.0 CUDA:0 (Tesla T4, 15102MiB)
#033[34m#033[1mhyperparameters: #033[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
#033[34m#033[1mComet: #033[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
#033[34m#033[1mTensorBoard: #033[0mStart with 'tensorboard --logdir /opt/ml/model', view at http://localhost:6006/
Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...
0%|          | 0.00/755k [00:00<?, ?B/s]
100%|██████████| 755k/755k [00:00<00:00, 42.6MB/s]
Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...
0%|          | 0.00/14.1M [00:00<?, ?B/s]
100%|██████████| 14.1M/14.1M [00:00<00:00, 411MB/s]
from  n    params  module                                  arguments
0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
2                -1  1     18816  models.common.C3                        [64, 64, 1]
3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
4                -1  2    115712  models.common.C3                        [128, 128, 2]
5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
6                -1  3    625152  models.common.C3                        [256, 256, 3]
7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
8                -1  1   1182720  models.common.C3                        [512, 512, 1]
9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
12           [-1, 6]  1         0  models.common.Concat                    [1]
13                -1  1    361984  models.common.C3                        [512, 256, 1, False]
14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
16           [-1, 4]  1         0  models.common.Concat                    [1]
17                -1  1     90880  models.common.C3                        [256, 128, 1, False]
18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
19          [-1, 14]  1         0  models.common.Concat                    [1]
20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
22          [-1, 10]  1         0  models.common.Concat                    [1]
23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]
24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs
Transferred 348/349 items from yolov5s.pt
#033[34m#033[1mAMP: #033[0mchecks passed ✅
#033[34m#033[1moptimizer:#033[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias
#033[34m#033[1mtrain: #033[0mScanning /opt/ml/input/data/training/labels/train2017...:   0%|          | 0/128 [00:00<?, ?it/s]
#033[34m#033[1mtrain: #033[0mScanning /opt/ml/input/data/training/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<00:00, 2417.66it/s]
#033[34m#033[1mtrain: #033[0mNew cache created: /opt/ml/input/data/training/labels/train2017.cache
#033[34m#033[1mval: #033[0mScanning /opt/ml/input/data/training/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
#033[34m#033[1mval: #033[0mScanning /opt/ml/input/data/training/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
#033[34m#033[1mAutoAnchor: #033[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to /opt/ml/model/exp/labels.jpg...
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to #033[1m/opt/ml/model/exp#033[0m
Starting training for 3 epochs...
Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
0%|          | 0/16 [00:00<?, ?it/s]
0/2      1.72G    0.04263    0.04785    0.02002         84        640:   0%|          | 0/16 [00:00<?, ?it/s]
0/2      1.72G    0.04263    0.04785    0.02002         84        640:   6%|▋         | 1/16 [00:00<00:07,  2.00it/s]
0/2      1.86G    0.04137     0.0532    0.01919         77        640:   6%|▋         | 1/16 [00:00<00:07,  2.00it/s]
0/2      1.86G    0.04137     0.0532    0.01919         77        640:  12%|█▎        | 2/16 [00:00<00:04,  3.39it/s]
0/2      1.86G    0.04399    0.05919    0.01962         86        640:  12%|█▎        | 2/16 [00:00<00:04,  3.39it/s]
0/2      1.86G    0.04399    0.05919    0.01962         86        640:  19%|█▉        | 3/16 [00:00<00:03,  3.98it/s]
0/2      1.86G     0.0457    0.06293    0.01933        123        640:  19%|█▉        | 3/16 [00:01<00:03,  3.98it/s]#015        0/2      1.86G     0.0457    0.06293    0.01933        123        640:  25%|██▌       | 4/16 [00:01<00:03,  3.71it/s]
0/2      1.86G    0.04631    0.06611    0.01771        115        640:  25%|██▌       | 4/16 [00:01<00:03,  3.71it/s]
0/2      1.86G    0.04631    0.06611    0.01771        115        640:  31%|███▏      | 5/16 [00:01<00:02,  4.62it/s]
0/2      1.86G    0.04695    0.06591    0.01847        114        640:  31%|███▏      | 5/16 [00:01<00:02,  4.62it/s]#015        0/2      1.86G    0.04695    0.06591    0.01847        114        640:  38%|███▊      | 6/16 [00:01<00:01,  5.28it/s]
0/2      1.86G    0.04622    0.06352    0.01832         78        640:  38%|███▊      | 6/16 [00:01<00:01,  5.28it/s]#015        0/2      1.86G    0.04622    0.06352    0.01832         78        640:  44%|████▍     | 7/16 [00:01<00:01,  5.99it/s]
0/2      1.86G    0.04573    0.06442      0.018        118        640:  44%|████▍     | 7/16 [00:01<00:01,  5.99it/s]
0/2      1.86G    0.04573    0.06442      0.018        118        640:  50%|█████     | 8/16 [00:01<00:01,  6.63it/s]
0/2      1.86G    0.04537    0.06323    0.01781         76        640:  50%|█████     | 8/16 [00:01<00:01,  6.63it/s]
0/2      1.86G    0.04574    0.06244    0.01824         91        640:  50%|█████     | 8/16 [00:01<00:01,  6.63it/s]
0/2      1.86G    0.04574    0.06244    0.01824         91        640:  62%|██████▎   | 10/16 [00:01<00:00,  7.67it/s]
0/2      1.86G    0.04525    0.06201    0.01792         96        640:  62%|██████▎   | 10/16 [00:01<00:00,  7.67it/s]
0/2      1.86G    0.04525    0.06201    0.01792         96        640:  69%|██████▉   | 11/16 [00:01<00:00,  8.13it/s]
0/2      1.86G    0.04521     0.0621    0.01862        103        640:  69%|██████▉   | 11/16 [00:02<00:00,  8.13it/s]#015        0/2      1.86G    0.04521     0.0621    0.01862        103        640:  75%|███████▌  | 12/16 [00:02<00:00,  7.87it/s]
0/2      1.86G    0.04485    0.06149     0.0183         91        640:  75%|███████▌  | 12/16 [00:02<00:00,  7.87it/s]
0/2      1.86G    0.04485    0.06149     0.0183         91        640:  81%|████████▏ | 13/16 [00:02<00:00,  8.36it/s]
0/2      1.86G    0.04482    0.06218    0.01863        116        640:  81%|████████▏ | 13/16 [00:02<00:00,  8.36it/s]
0/2      1.86G    0.04482    0.06218    0.01863        116        640:  88%|████████▊ | 14/16 [00:02<00:00,  8.19it/s]
0/2      1.86G    0.04545    0.06109    0.01889         63        640:  88%|████████▊ | 14/16 [00:02<00:00,  8.19it/s]#015        0/2      1.86G    0.04545    0.06109    0.01889         63        640:  94%|█████████▍| 15/16 [00:02<00:00,  8.26it/s]
0/2      1.86G    0.04523    0.06067    0.01926         82        640:  94%|█████████▍| 15/16 [00:02<00:00,  8.26it/s]#015        0/2      1.86G    0.04523    0.06067    0.01926         82        640: 100%|██████████| 16/16 [00:02<00:00,  8.03it/s]#015        0/2      1.86G    0.04523    0.06067    0.01926         82        640: 100%|██████████| 16/16 [00:02<00:00,  6.20it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/8 [00:00<?, ?it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  12%|█▎        | 1/8 [00:01<00:10,  1.44s/it]
Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 2/8 [00:01<00:04,  1.48it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  38%|███▊      | 3/8 [00:01<00:02,  2.10it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 4/8 [00:01<00:01,  2.94it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  62%|██████▎   | 5/8 [00:02<00:00,  3.70it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 6/8 [00:02<00:00,  3.92it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  88%|████████▊ | 7/8 [00:02<00:00,  4.14it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:02<00:00,  4.35it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:02<00:00,  2.92it/s]
all        128        929      0.732      0.631      0.718      0.477
Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
0%|          | 0/16 [00:00<?, ?it/s]
1/2      2.03G    0.05467    0.06597    0.02623        109        640:   0%|          | 0/16 [00:00<?, ?it/s]
1/2      2.03G    0.04909     0.0572     0.0236         60        640:   0%|          | 0/16 [00:00<?, ?it/s]
1/2      2.03G    0.04909     0.0572     0.0236         60        640:  12%|█▎        | 2/16 [00:00<00:01, 10.01it/s]
1/2      2.03G    0.04965    0.06586    0.02222        137        640:  12%|█▎        | 2/16 [00:00<00:01, 10.01it/s]
1/2      2.04G    0.04856    0.07264    0.02058        143        640:  12%|█▎        | 2/16 [00:00<00:01, 10.01it/s]
1/2      2.04G    0.04856    0.07264    0.02058        143        640:  25%|██▌       | 4/16 [00:00<00:01, 10.01it/s]
1/2      2.04G    0.04746    0.07102    0.01933         91        640:  25%|██▌       | 4/16 [00:00<00:01, 10.01it/s]
1/2      2.04G    0.04695     0.0708    0.01908         94        640:  25%|██▌       | 4/16 [00:00<00:01, 10.01it/s]
1/2      2.04G    0.04695     0.0708    0.01908         94        640:  38%|███▊      | 6/16 [00:00<00:01,  9.95it/s]
1/2      2.04G    0.04689     0.0724    0.01959        135        640:  38%|███▊      | 6/16 [00:00<00:01,  9.95it/s]
1/2      2.04G    0.04749    0.07476    0.01983        159        640:  38%|███▊      | 6/16 [00:00<00:01,  9.95it/s]
1/2      2.04G    0.04749    0.07476    0.01983        159        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
1/2      2.04G    0.04698    0.07365    0.01919         97        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
1/2      2.04G     0.0468    0.07334    0.01888        109        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
1/2      2.04G     0.0468    0.07334    0.01888        109        640:  62%|██████▎   | 10/16 [00:00<00:00,  9.99it/s]
1/2      2.04G    0.04633    0.07145      0.019         88        640:  62%|██████▎   | 10/16 [00:01<00:00,  9.99it/s]
1/2      2.04G    0.04585       0.07      0.019         79        640:  62%|██████▎   | 10/16 [00:01<00:00,  9.99it/s]
1/2      2.04G    0.04585       0.07      0.019         79        640:  75%|███████▌  | 12/16 [00:01<00:00,  9.89it/s]
1/2      2.04G    0.04636    0.06949    0.01866        104        640:  75%|███████▌  | 12/16 [00:01<00:00,  9.89it/s]
1/2      2.04G    0.04635    0.06968    0.01835        120        640:  75%|███████▌  | 12/16 [00:01<00:00,  9.89it/s]
1/2      2.04G    0.04635    0.06968    0.01835        120        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.15it/s]
1/2      2.04G    0.04637    0.06777    0.01839         76        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.15it/s]
1/2      2.04G    0.04622    0.06747    0.01825        116        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.15it/s]
1/2      2.04G    0.04622    0.06747    0.01825        116        640: 100%|██████████| 16/16 [00:01<00:00,  8.42it/s]#015        1/2      2.04G    0.04622    0.06747    0.01825        116        640: 100%|██████████| 16/16 [00:01<00:00,  9.33it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/8 [00:00<?, ?it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  12%|█▎        | 1/8 [00:00<00:00,  7.77it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 2/8 [00:00<00:00,  7.41it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  38%|███▊      | 3/8 [00:00<00:00,  7.31it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 4/8 [00:00<00:00,  7.30it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  62%|██████▎   | 5/8 [00:00<00:00,  7.08it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 6/8 [00:00<00:00,  6.67it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  88%|████████▊ | 7/8 [00:01<00:00,  6.77it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:01<00:00,  6.87it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:01<00:00,  6.99it/s]
all        128        929      0.785      0.629      0.738      0.498
Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
0%|          | 0/16 [00:00<?, ?it/s]
2/2      2.04G    0.04802     0.1227    0.01417        195        640:   0%|          | 0/16 [00:00<?, ?it/s]
2/2      2.04G    0.04561    0.08766    0.01594        101        640:   0%|          | 0/16 [00:00<?, ?it/s]
2/2      2.04G    0.04561    0.08766    0.01594        101        640:  12%|█▎        | 2/16 [00:00<00:01,  9.64it/s]
2/2      2.04G    0.04542    0.07617    0.01757         86        640:  12%|█▎        | 2/16 [00:00<00:01,  9.64it/s]
2/2      2.04G    0.04423    0.07265    0.01708         98        640:  12%|█▎        | 2/16 [00:00<00:01,  9.64it/s]
2/2      2.04G    0.04423    0.07265    0.01708         98        640:  25%|██▌       | 4/16 [00:00<00:01, 10.27it/s]
2/2      2.04G    0.04398    0.07078    0.01723        111        640:  25%|██▌       | 4/16 [00:00<00:01, 10.27it/s]
2/2      2.04G    0.04369    0.07246    0.01751        113        640:  25%|██▌       | 4/16 [00:00<00:01, 10.27it/s]
2/2      2.04G    0.04369    0.07246    0.01751        113        640:  38%|███▊      | 6/16 [00:00<00:01, 10.00it/s]
2/2      2.04G    0.04346    0.06956      0.018        102        640:  38%|███▊      | 6/16 [00:00<00:01, 10.00it/s]
2/2      2.04G    0.04342    0.06977    0.01773        118        640:  38%|███▊      | 6/16 [00:00<00:01, 10.00it/s]
2/2      2.04G    0.04342    0.06977    0.01773        118        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
2/2      2.04G    0.04328    0.06999    0.01823        102        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
2/2      2.04G    0.04326    0.06942    0.01802        113        640:  50%|█████     | 8/16 [00:00<00:00, 10.21it/s]
2/2      2.04G    0.04326    0.06942    0.01802        113        640:  62%|██████▎   | 10/16 [00:00<00:00, 10.05it/s]
2/2      2.04G    0.04364    0.06832    0.01798        118        640:  62%|██████▎   | 10/16 [00:01<00:00, 10.05it/s]
2/2      2.04G    0.04363    0.06963    0.01759        140        640:  62%|██████▎   | 10/16 [00:01<00:00, 10.05it/s]
2/2      2.04G    0.04363    0.06963    0.01759        140        640:  75%|███████▌  | 12/16 [00:01<00:00, 10.25it/s]
2/2      2.04G    0.04389    0.06915     0.0175        107        640:  75%|███████▌  | 12/16 [00:01<00:00, 10.25it/s]
2/2      2.04G    0.04385     0.0688    0.01785         98        640:  75%|███████▌  | 12/16 [00:01<00:00, 10.25it/s]
2/2      2.04G    0.04385     0.0688    0.01785         98        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.07it/s]
2/2      2.04G    0.04383    0.06737    0.01852         62        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.07it/s]
2/2      2.04G    0.04365    0.06745    0.01911         96        640:  88%|████████▊ | 14/16 [00:01<00:00, 10.07it/s]
2/2      2.04G    0.04365    0.06745    0.01911         96        640: 100%|██████████| 16/16 [00:01<00:00,  8.03it/s]#015        2/2      2.04G    0.04365    0.06745    0.01911         96        640: 100%|██████████| 16/16 [00:01<00:00,  9.17it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/8 [00:00<?, ?it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  12%|█▎        | 1/8 [00:00<00:00,  7.89it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 2/8 [00:00<00:00,  7.56it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  38%|███▊      | 3/8 [00:00<00:00,  7.36it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 4/8 [00:00<00:00,  7.44it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  62%|██████▎   | 5/8 [00:00<00:00,  6.98it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 6/8 [00:00<00:00,  6.80it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  88%|████████▊ | 7/8 [00:01<00:00,  6.67it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:01<00:00,  6.90it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:01<00:00,  7.03it/s]
all        128        929      0.819      0.627      0.747      0.504
3 epochs completed in 0.004 hours.
Optimizer stripped from /opt/ml/model/exp/weights/last.pt, 14.8MB
Optimizer stripped from /opt/ml/model/exp/weights/best.pt, 14.8MB
Validating /opt/ml/model/exp/weights/best.pt...
Fusing layers...
YOLOv5s summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs
Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/8 [00:00<?, ?it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  12%|█▎        | 1/8 [00:00<00:01,  5.84it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 2/8 [00:00<00:01,  3.41it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  38%|███▊      | 3/8 [00:00<00:01,  2.83it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 4/8 [00:01<00:01,  2.61it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  62%|██████▎   | 5/8 [00:01<00:00,  3.20it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 6/8 [00:01<00:00,  3.68it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95:  88%|████████▊ | 7/8 [00:01<00:00,  4.16it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:02<00:00,  4.61it/s]
Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 8/8 [00:02<00:00,  3.76it/s]
all        128        929      0.819      0.627      0.746      0.503
person        128        254        0.9      0.669      0.807      0.523
bicycle        128          6          1      0.331      0.711      0.427
car        128         46      0.859      0.413      0.579      0.243
motorcycle        128          5      0.682        0.8      0.798      0.663
airplane        128          6      0.979          1      0.995      0.755
bus        128          7      0.748      0.714      0.779      0.659
train        128          3          1      0.659      0.863      0.532
truck        128         12      0.664      0.333      0.501      0.242
boat        128          6          1      0.301      0.519      0.252
traffic light        128         14      0.607      0.214      0.377      0.222
stop sign        128          2      0.792          1      0.995      0.772
bench        128          9      0.823       0.52      0.717      0.311
bird        128         16      0.885          1      0.991      0.651
cat        128          4      0.918          1      0.995       0.77
dog        128          9          1      0.653      0.901      0.693
horse        128          2       0.89          1      0.995      0.622
              elephant        128         17      0.972      0.882      0.939      0.651
                  bear        128          1       0.71          1      0.995      0.995
zebra        128          4      0.885          1      0.995       0.93
giraffe        128          9      0.877      0.791      0.962      0.756
backpack        128          6          1      0.562      0.836      0.428
umbrella        128         18       0.79      0.629      0.877      0.529
handbag        128         19      0.959      0.158      0.337      0.188
tie        128          7      0.817      0.645      0.777      0.486
              suitcase        128          4      0.866          1      0.995      0.601
               frisbee        128          5      0.735        0.8        0.8      0.627
skis        128          1      0.827          1      0.995      0.497
             snowboard        128          7       0.85      0.714      0.867      0.544
sports ball        128          6      0.685      0.667      0.668      0.346
kite        128         10      0.835      0.508      0.628       0.22
baseball bat        128          4      0.521       0.25      0.388      0.171
baseball glove        128          7      0.763      0.429       0.47      0.276
skateboard        128          5      0.725       0.54      0.648      0.479
tennis racket        128          7      0.801      0.429      0.559      0.344
bottle        128         18      0.588      0.333      0.601       0.31
wine glass        128         16      0.735      0.875       0.89      0.448
cup        128         36      0.902      0.667      0.839       0.52
                  fork        128          6          1      0.311      0.439      0.302
knife        128         16      0.829      0.625      0.704      0.393
spoon        128         22      0.828      0.439      0.637      0.363
bowl        128         28          1       0.63      0.763      0.573
banana        128          1      0.809          1      0.995      0.302
sandwich        128          2          1          0      0.448      0.383
orange        128          4      0.829          1      0.995      0.738
broccoli        128         11      0.824      0.364      0.491      0.356
carrot        128         24      0.685      0.625      0.713      0.487
hot dog        128          2      0.547          1      0.663      0.614
pizza        128          5          1      0.792      0.962       0.77
donut        128         14      0.674          1      0.946      0.799
cake        128          4      0.774          1      0.995      0.846
chair        128         35      0.612      0.632      0.619      0.319
couch        128          6          1      0.646      0.826      0.527
          potted plant        128         14      0.903      0.786      0.875      0.508
bed        128          3          1          0      0.863      0.532
          dining table        128         13      0.804      0.317      0.621      0.407
toilet        128          2      0.857          1      0.995      0.796
                    tv        128          2      0.751          1      0.995      0.796
                laptop        128          3          1          0      0.913      0.548
                 mouse        128          2          1          0     0.0907     0.0454
                remote        128          8          1      0.617      0.629      0.513
cell phone        128          8      0.722      0.332      0.453      0.262
             microwave        128          3      0.848          1      0.995      0.843
oven        128          5      0.667        0.4       0.43      0.298
sink        128          6      0.272      0.167      0.338      0.252
refrigerator        128          5      0.672        0.8       0.81      0.558
book        128         29      0.749      0.206      0.367      0.168
clock        128          9      0.762      0.778      0.879      0.689
vase        128          2      0.439          1      0.995      0.895
scissors        128          1          1          0      0.166     0.0332
            teddy bear        128         21       0.85      0.571      0.788      0.506
            toothbrush        128          5      0.826          1      0.995      0.618
Results saved to #033[1m/opt/ml/model/exp#033[0m
2023-07-04 07:53:23,480 sagemaker-training-toolkit INFO     Waiting for the process to finish and give a return code.
2023-07-04 07:53:23,480 sagemaker-training-toolkit INFO     Done waiting for a return code. Received 0 from exiting process.
2023-07-04 07:53:23,480 sagemaker-training-toolkit INFO     Reporting training SUCCESS

2023-07-04 07:53:38 Uploading - Uploading generated training model
2023-07-04 07:53:38 Completed - Training job completed
Training seconds: 368
Billable seconds: 368

 

SageMaker에서 S3 버킷에 저장된 기계 학습 데이터를 사용하는 작업을 완료하였습니다.
이제 기계 학습 시 사용하는 기계 학습 데이터를 S3 버킷에 저장 및 관리하면서 기계 학습을 사용해보시기 바랍니다.

 

 

 

지금까지 SageMaker에서 S3 버킷에 저장된 기계 학습 데이터를 사용해보는 작업을 알아보는 시간이었습니다....! 끝...!

 

 

유익하게 보셨다면 공감을 눌러주고, 댓글로 의견을 공유해 남겨주시면 감사하겠습니다!

 

 

 

+ Recent posts