학습 상세 로그
Using provided s3_resource
INFO:sagemaker:Creating training-job with name: sagemaker-2023-06-30-08-49-38-688
2023-06-30 08:49:43 Starting - Starting the training job...
2023-06-30 08:50:00 Starting - Preparing the instances for training......
2023-06-30 08:51:00 Downloading - Downloading input data...
2023-06-30 08:51:20 Training - Downloading the training image.................................
2023-06-30 08:56:55 Training - Training image download completed. Training in progress.bash: cannot set terminal process group (-1): Inappropriate ioctl for device
bash: no job control in this shell
2023-06-30 08:57:05,915 sagemaker-training-toolkit INFO Imported framework sagemaker_pytorch_container.training
2023-06-30 08:57:05,930 sagemaker-training-toolkit INFO No Neurons detected (normal if no neurons installed)
2023-06-30 08:57:05,939 sagemaker_pytorch_container.training INFO Block until all host DNS lookups succeed.
2023-06-30 08:57:05,944 sagemaker_pytorch_container.training INFO Invoking user training script.
2023-06-30 08:57:08,222 sagemaker-training-toolkit INFO Installing dependencies from requirements.txt:
/opt/conda/bin/python3.10 -m pip install -r requirements.txt
Collecting gitpython>=3.1.30 (from -r requirements.txt (line 5))
Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.3/184.3 kB 13.1 MB/s eta 0:00:00
Requirement already satisfied: matplotlib>=3.3 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 6)) (3.7.1)
Requirement already satisfied: numpy>=1.18.5 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 7)) (1.23.5)
Requirement already satisfied: opencv-python>=4.1.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 8)) (4.7.0)
Requirement already satisfied: Pillow>=7.1.2 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 9)) (9.4.0)
Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 10)) (5.9.5)
Requirement already satisfied: PyYAML>=5.3.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 11)) (5.4.1)
Requirement already satisfied: requests>=2.23.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 12)) (2.28.2)
Requirement already satisfied: scipy>=1.4.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 13)) (1.10.1)
Collecting thop>=0.1.1 (from -r requirements.txt (line 14))
Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB)
Requirement already satisfied: torch>=1.7.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 15)) (2.0.0)
Requirement already satisfied: torchvision>=0.8.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 16)) (0.15.1)
Requirement already satisfied: tqdm>=4.64.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 17)) (4.65.0)
Collecting ultralytics>=8.0.111 (from -r requirements.txt (line 18))
Downloading ultralytics-8.0.124-py3-none-any.whl (612 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 612.6/612.6 kB 35.5 MB/s eta 0:00:00
Requirement already satisfied: pandas>=1.1.4 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 27)) (2.0.1)
Requirement already satisfied: seaborn>=0.11.0 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 28)) (0.12.2)
Requirement already satisfied: setuptools>=65.5.1 in /opt/conda/lib/python3.10/site-packages (from -r requirements.txt (line 42)) (65.6.3)
Collecting gitdb<5,>=4.0.1 (from gitpython>=3.1.30->-r requirements.txt (line 5))
Downloading gitdb-4.0.10-py3-none-any.whl (62 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 17.3 MB/s eta 0:00:00
Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (1.0.7)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (4.39.4)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (1.4.4)
Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (23.1)
Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.10/site-packages (from matplotlib>=3.3->-r requirements.txt (line 6)) (2.8.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (3.1.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (3.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (1.26.15)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.23.0->-r requirements.txt (line 12)) (2023.5.7)
Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.12.0)
Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (4.5.0)
Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (1.11.1)
Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.1)
Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=1.7.0->-r requirements.txt (line 15)) (3.1.2)
Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas>=1.1.4->-r requirements.txt (line 27)) (2023.3)
Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.10/site-packages (from pandas>=1.1.4->-r requirements.txt (line 27)) (2023.3)
Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython>=3.1.30->-r requirements.txt (line 5))
Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=3.3->-r requirements.txt (line 6)) (1.16.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=1.7.0->-r requirements.txt (line 15)) (2.1.2)
Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch>=1.7.0->-r requirements.txt (line 15)) (1.3.0)
Installing collected packages: smmap, gitdb, thop, gitpython, ultralytics
Successfully installed gitdb-4.0.10 gitpython-3.1.31 smmap-5.0.0 thop-0.1.1.post2209072238 ultralytics-8.0.124
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
2023-06-30 08:57:10,933 sagemaker-training-toolkit INFO Waiting for the process to finish and give a return code.
2023-06-30 08:57:10,933 sagemaker-training-toolkit INFO Done waiting for a return code. Received 0 from exiting process.
2023-06-30 08:57:10,950 sagemaker-training-toolkit INFO No Neurons detected (normal if no neurons installed)
2023-06-30 08:57:10,975 sagemaker-training-toolkit INFO No Neurons detected (normal if no neurons installed)
2023-06-30 08:57:10,999 sagemaker-training-toolkit INFO No Neurons detected (normal if no neurons installed)
2023-06-30 08:57:11,008 sagemaker-training-toolkit INFO Invoking user script
Training Env:
{
"additional_framework_parameters": {},
"channel_input_dirs": {},
"current_host": "algo-1",
"current_instance_group": "homogeneousCluster",
"current_instance_group_hosts": [
"algo-1"
],
"current_instance_type": "ml.g4dn.xlarge",
"distribution_hosts": [],
"distribution_instance_groups": [],
"framework_module": "sagemaker_pytorch_container.training:main",
"hosts": [
"algo-1"
],
"hyperparameters": {
"batch-size": 8,
"cfg": "yolov5s.yaml",
"data": "coco128.yaml",
"epochs": 3,
"project": "/opt/ml/model"
},
"input_config_dir": "/opt/ml/input/config",
"input_data_config": {},
"input_dir": "/opt/ml/input",
"instance_groups": [
"homogeneousCluster"
],
"instance_groups_dict": {
"homogeneousCluster": {
"instance_group_name": "homogeneousCluster",
"instance_type": "ml.g4dn.xlarge",
"hosts": [
"algo-1"
]
}
},
"is_hetero": false,
"is_master": true,
"is_modelparallel_enabled": null,
"is_smddpmprun_installed": true,
"job_name": "sagemaker-2023-06-30-08-49-38-688",
"log_level": 20,
"master_hostname": "algo-1",
"model_dir": "/opt/ml/model",
"module_dir": "s3://####################/sagemaker-2023-06-30-08-49-38-688/source/sourcedir.tar.gz",
"module_name": "train",
"network_interface_name": "eth0",
"num_cpus": 4,
"num_gpus": 1,
"num_neurons": 0,
"output_data_dir": "/opt/ml/output/data",
"output_dir": "/opt/ml/output",
"output_intermediate_dir": "/opt/ml/output/intermediate",
"resource_config": {
"current_host": "algo-1",
"current_instance_type": "ml.g4dn.xlarge",
"current_group_name": "homogeneousCluster",
"hosts": [
"algo-1"
],
"instance_groups": [
{
"instance_group_name": "homogeneousCluster",
"instance_type": "ml.g4dn.xlarge",
"hosts": [
"algo-1"
]
}
],
"network_interface_name": "eth0"
},
"user_entry_point": "train.py"
}
Environment variables:
SM_HOSTS=["algo-1"]
SM_NETWORK_INTERFACE_NAME=eth0
SM_HPS={"batch-size":8,"cfg":"yolov5s.yaml","data":"coco128.yaml","epochs":3,"project":"/opt/ml/model"}
SM_USER_ENTRY_POINT=train.py
SM_FRAMEWORK_PARAMS={}
SM_RESOURCE_CONFIG={"current_group_name":"homogeneousCluster","current_host":"algo-1","current_instance_type":"ml.g4dn.xlarge","hosts":["algo-1"],"instance_groups":[{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}],"network_interface_name":"eth0"}
SM_INPUT_DATA_CONFIG={}
SM_OUTPUT_DATA_DIR=/opt/ml/output/data
SM_CHANNELS=[]
SM_CURRENT_HOST=algo-1
SM_CURRENT_INSTANCE_TYPE=ml.g4dn.xlarge
SM_CURRENT_INSTANCE_GROUP=homogeneousCluster
SM_CURRENT_INSTANCE_GROUP_HOSTS=["algo-1"]
SM_INSTANCE_GROUPS=["homogeneousCluster"]
SM_INSTANCE_GROUPS_DICT={"homogeneousCluster":{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}}
SM_DISTRIBUTION_INSTANCE_GROUPS=[]
SM_IS_HETERO=false
SM_MODULE_NAME=train
SM_LOG_LEVEL=20
SM_FRAMEWORK_MODULE=sagemaker_pytorch_container.training:main
SM_INPUT_DIR=/opt/ml/input
SM_INPUT_CONFIG_DIR=/opt/ml/input/config
SM_OUTPUT_DIR=/opt/ml/output
SM_NUM_CPUS=4
SM_NUM_GPUS=1
SM_NUM_NEURONS=0
SM_MODEL_DIR=/opt/ml/model
SM_MODULE_DIR=s3://####################/sagemaker-2023-06-30-08-49-38-688/source/sourcedir.tar.gz
SM_TRAINING_ENV={"additional_framework_parameters":{},"channel_input_dirs":{},"current_host":"algo-1","current_instance_group":"homogeneousCluster","current_instance_group_hosts":["algo-1"],"current_instance_type":"ml.g4dn.xlarge","distribution_hosts":[],"distribution_instance_groups":[],"framework_module":"sagemaker_pytorch_container.training:main","hosts":["algo-1"],"hyperparameters":{"batch-size":8,"cfg":"yolov5s.yaml","data":"coco128.yaml","epochs":3,"project":"/opt/ml/model"},"input_config_dir":"/opt/ml/input/config","input_data_config":{},"input_dir":"/opt/ml/input","instance_groups":["homogeneousCluster"],"instance_groups_dict":{"homogeneousCluster":{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}},"is_hetero":false,"is_master":true,"is_modelparallel_enabled":null,"is_smddpmprun_installed":true,"job_name":"sagemaker-2023-06-30-08-49-38-688","log_level":20,"master_hostname":"algo-1","model_dir":"/opt/ml/model","module_dir":"s3://####################/sagemaker-2023-06-30-08-49-38-688/source/sourcedir.tar.gz","module_name":"train","network_interface_name":"eth0","num_cpus":4,"num_gpus":1,"num_neurons":0,"output_data_dir":"/opt/ml/output/data","output_dir":"/opt/ml/output","output_intermediate_dir":"/opt/ml/output/intermediate","resource_config":{"current_group_name":"homogeneousCluster","current_host":"algo-1","current_instance_type":"ml.g4dn.xlarge","hosts":["algo-1"],"instance_groups":[{"hosts":["algo-1"],"instance_group_name":"homogeneousCluster","instance_type":"ml.g4dn.xlarge"}],"network_interface_name":"eth0"},"user_entry_point":"train.py"}
SM_USER_ARGS=["--batch-size","8","--cfg","yolov5s.yaml","--data","coco128.yaml","--epochs","3","--project","/opt/ml/model"]
SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate
SM_HP_BATCH-SIZE=8
SM_HP_CFG=yolov5s.yaml
SM_HP_DATA=coco128.yaml
SM_HP_EPOCHS=3
SM_HP_PROJECT=/opt/ml/model
PYTHONPATH=/opt/ml/code:/opt/conda/bin:/opt/conda/lib/python310.zip:/opt/conda/lib/python3.10:/opt/conda/lib/python3.10/lib-dynload:/opt/conda/lib/python3.10/site-packages
Invoking script with the following command:
/opt/conda/bin/python3.10 train.py --batch-size 8 --cfg yolov5s.yaml --data coco128.yaml --epochs 3 --project /opt/ml/model
2023-06-30 08:57:11,040 sagemaker-training-toolkit INFO Exceptions not imported for SageMaker TF as Tensorflow is not installed.
#033[34m#033[1mtrain: #033[0mweights=yolov5s.pt, cfg=yolov5s.yaml, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=8, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/opt/ml/model, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
#033[34m#033[1mgithub: #033[0mup to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5 🚀 v7.0-187-g0004c74 Python-3.10.8 torch-2.0.0 CUDA:0 (Tesla T4, 15102MiB)
#033[34m#033[1mhyperparameters: #033[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
#033[34m#033[1mComet: #033[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
#033[34m#033[1mTensorBoard: #033[0mStart with 'tensorboard --logdir /opt/ml/model', view at http://localhost:6006/
Dataset not found ⚠️, missing paths ['/opt/ml/datasets/coco128/images/train2017']
Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...
0%| | 0.00/6.66M [00:00<?, ?B/s]
100%|██████████| 6.66M/6.66M [00:00<00:00, 258MB/s]
Dataset download success ✅ (0.8s), saved to #033[1m/opt/ml/datasets#033[0m
Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...
0%| | 0.00/755k [00:00<?, ?B/s]
100%|██████████| 755k/755k [00:00<00:00, 43.8MB/s]
Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...
0%| | 0.00/14.1M [00:00<?, ?B/s]
4%|▍ | 560k/14.1M [00:00<00:02, 5.63MB/s]
8%|▊ | 1.09M/14.1M [00:00<00:02, 5.60MB/s]
12%|█▏ | 1.62M/14.1M [00:00<00:02, 5.61MB/s]
17%|█▋ | 2.38M/14.1M [00:00<00:01, 6.49MB/s]
27%|██▋ | 3.80M/14.1M [00:00<00:01, 9.51MB/s]
37%|███▋ | 5.18M/14.1M [00:00<00:00, 10.8MB/s]
54%|█████▍ | 7.69M/14.1M [00:00<00:00, 15.7MB/s]
67%|██████▋ | 9.48M/14.1M [00:00<00:00, 16.6MB/s]
84%|████████▍ | 11.8M/14.1M [00:00<00:00, 19.1MB/s]
97%|█████████▋| 13.7M/14.1M [00:01<00:00, 18.8MB/s]
100%|██████████| 14.1M/14.1M [00:01<00:00, 14.1MB/s]
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs
Transferred 348/349 items from yolov5s.pt
#033[34m#033[1mAMP: #033[0mchecks passed ✅
#033[34m#033[1moptimizer:#033[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias
#033[34m#033[1mtrain: #033[0mScanning /opt/ml/datasets/coco128/labels/train2017...: 0%| | 0/128 [00:00<?, ?it/s]
#033[34m#033[1mtrain: #033[0mScanning /opt/ml/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<00:00, 3075.76it/s]
#033[34m#033[1mtrain: #033[0mNew cache created: /opt/ml/datasets/coco128/labels/train2017.cache
#033[34m#033[1mval: #033[0mScanning /opt/ml/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
#033[34m#033[1mval: #033[0mScanning /opt/ml/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
#033[34m#033[1mAutoAnchor: #033[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to /opt/ml/model/exp/labels.jpg...
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to #033[1m/opt/ml/model/exp#033[0m
Starting training for 3 epochs...
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
0%| | 0/16 [00:00<?, ?it/s]
0/2 1.72G 0.04263 0.04785 0.02002 84 640: 0%| | 0/16 [00:00<?, ?it/s]
0/2 1.72G 0.04263 0.04785 0.02002 84 640: 6%|▋ | 1/16 [00:00<00:09, 1.65it/s]
0/2 1.86G 0.04137 0.0532 0.01919 77 640: 6%|▋ | 1/16 [00:00<00:09, 1.65it/s]
0/2 1.86G 0.04137 0.0532 0.01919 77 640: 12%|█▎ | 2/16 [00:00<00:04, 2.91it/s]
0/2 1.86G 0.04399 0.05919 0.01962 86 640: 12%|█▎ | 2/16 [00:00<00:04, 2.91it/s]
0/2 1.86G 0.04399 0.05919 0.01962 86 640: 19%|█▉ | 3/16 [00:00<00:03, 3.75it/s]
0/2 1.86G 0.0457 0.06293 0.01933 123 640: 19%|█▉ | 3/16 [00:01<00:03, 3.75it/s]
0/2 1.86G 0.0457 0.06293 0.01933 123 640: 25%|██▌ | 4/16 [00:01<00:02, 4.25it/s]
0/2 1.86G 0.04631 0.06611 0.01771 115 640: 25%|██▌ | 4/16 [00:01<00:02, 4.25it/s]
0/2 1.86G 0.04631 0.06611 0.01771 115 640: 31%|███▏ | 5/16 [00:01<00:02, 5.16it/s]
0/2 1.86G 0.04695 0.06591 0.01847 114 640: 31%|███▏ | 5/16 [00:01<00:02, 5.16it/s]
0/2 1.86G 0.04695 0.06591 0.01847 114 640: 38%|███▊ | 6/16 [00:01<00:01, 6.04it/s]
0/2 1.86G 0.04622 0.06352 0.01832 78 640: 38%|███▊ | 6/16 [00:01<00:01, 6.04it/s]
0/2 1.86G 0.04622 0.06352 0.01832 78 640: 44%|████▍ | 7/16 [00:01<00:01, 6.84it/s]
0/2 1.86G 0.04573 0.06442 0.018 118 640: 44%|████▍ | 7/16 [00:01<00:01, 6.84it/s]
0/2 1.86G 0.04573 0.06442 0.018 118 640: 50%|█████ | 8/16 [00:01<00:01, 7.43it/s]
0/2 1.86G 0.04537 0.06323 0.01781 76 640: 50%|█████ | 8/16 [00:01<00:01, 7.43it/s]
0/2 1.86G 0.04574 0.06244 0.01824 91 640: 50%|█████ | 8/16 [00:01<00:01, 7.43it/s]
0/2 1.86G 0.04574 0.06244 0.01824 91 640: 62%|██████▎ | 10/16 [00:01<00:00, 8.43it/s]
0/2 1.86G 0.04525 0.06201 0.01792 96 640: 62%|██████▎ | 10/16 [00:01<00:00, 8.43it/s]
0/2 1.86G 0.04521 0.0621 0.01862 103 640: 62%|██████▎ | 10/16 [00:01<00:00, 8.43it/s]
0/2 1.86G 0.04521 0.0621 0.01862 103 640: 75%|███████▌ | 12/16 [00:01<00:00, 8.92it/s]
0/2 1.86G 0.04485 0.06149 0.0183 91 640: 75%|███████▌ | 12/16 [00:02<00:00, 8.92it/s]
0/2 1.86G 0.04482 0.06218 0.01863 116 640: 75%|███████▌ | 12/16 [00:02<00:00, 8.92it/s]
0/2 1.86G 0.04482 0.06218 0.01863 116 640: 88%|████████▊ | 14/16 [00:02<00:00, 9.25it/s]
0/2 1.86G 0.04545 0.06109 0.01889 63 640: 88%|████████▊ | 14/16 [00:02<00:00, 9.25it/s]
0/2 1.86G 0.04523 0.06067 0.01926 82 640: 88%|████████▊ | 14/16 [00:02<00:00, 9.25it/s]
0/2 1.86G 0.04523 0.06067 0.01926 82 640: 100%|██████████| 16/16 [00:02<00:00, 9.50it/s]#015 0/2 1.86G 0.04523 0.06067 0.01926 82 640: 100%|██████████| 16/16 [00:02<00:00, 6.71it/s]
Class Images Instances P R mAP50 mAP50-95: 0%| | 0/8 [00:00<?, ?it/s]
Class Images Instances P R mAP50 mAP50-95: 12%|█▎ | 1/8 [00:01<00:08, 1.26s/it]
Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 2/8 [00:01<00:03, 1.67it/s]
Class Images Instances P R mAP50 mAP50-95: 38%|███▊ | 3/8 [00:01<00:02, 2.34it/s]
Class Images Instances P R mAP50 mAP50-95: 50%|█████ | 4/8 [00:01<00:01, 3.15it/s]
Class Images Instances P R mAP50 mAP50-95: 62%|██████▎ | 5/8 [00:01<00:00, 3.84it/s]
Class Images Instances P R mAP50 mAP50-95: 75%|███████▌ | 6/8 [00:02<00:00, 3.89it/s]
Class Images Instances P R mAP50 mAP50-95: 88%|████████▊ | 7/8 [00:02<00:00, 4.17it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:02<00:00, 4.39it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:02<00:00, 3.10it/s]
all 128 929 0.732 0.631 0.718 0.477
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
0%| | 0/16 [00:00<?, ?it/s]
1/2 2.19G 0.05467 0.06597 0.02623 109 640: 0%| | 0/16 [00:00<?, ?it/s]
1/2 2.19G 0.04909 0.0572 0.0236 60 640: 0%| | 0/16 [00:00<?, ?it/s]
1/2 2.19G 0.04909 0.0572 0.0236 60 640: 12%|█▎ | 2/16 [00:00<00:01, 10.13it/s]
1/2 2.19G 0.04965 0.06586 0.02222 137 640: 12%|█▎ | 2/16 [00:00<00:01, 10.13it/s]
1/2 2.19G 0.04856 0.07264 0.02058 143 640: 12%|█▎ | 2/16 [00:00<00:01, 10.13it/s]
1/2 2.19G 0.04856 0.07264 0.02058 143 640: 25%|██▌ | 4/16 [00:00<00:01, 10.04it/s]
1/2 2.19G 0.04746 0.07102 0.01933 91 640: 25%|██▌ | 4/16 [00:00<00:01, 10.04it/s]
1/2 2.19G 0.04695 0.0708 0.01908 94 640: 25%|██▌ | 4/16 [00:00<00:01, 10.04it/s]
1/2 2.19G 0.04695 0.0708 0.01908 94 640: 38%|███▊ | 6/16 [00:00<00:01, 9.85it/s]
1/2 2.19G 0.04689 0.0724 0.01959 135 640: 38%|███▊ | 6/16 [00:00<00:01, 9.85it/s]
1/2 2.19G 0.04749 0.07476 0.01983 159 640: 38%|███▊ | 6/16 [00:00<00:01, 9.85it/s]
1/2 2.19G 0.04749 0.07476 0.01983 159 640: 50%|█████ | 8/16 [00:00<00:00, 10.21it/s]
1/2 2.19G 0.04698 0.07365 0.01919 97 640: 50%|█████ | 8/16 [00:00<00:00, 10.21it/s]
1/2 2.19G 0.0468 0.07334 0.01888 109 640: 50%|█████ | 8/16 [00:00<00:00, 10.21it/s]
1/2 2.19G 0.0468 0.07334 0.01888 109 640: 62%|██████▎ | 10/16 [00:00<00:00, 10.03it/s]
1/2 2.19G 0.04633 0.07145 0.019 88 640: 62%|██████▎ | 10/16 [00:01<00:00, 10.03it/s]
1/2 2.19G 0.04585 0.07 0.019 79 640: 62%|██████▎ | 10/16 [00:01<00:00, 10.03it/s]
1/2 2.19G 0.04585 0.07 0.019 79 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.01it/s]
1/2 2.19G 0.04636 0.06949 0.01866 104 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.01it/s]
1/2 2.19G 0.04635 0.06968 0.01835 120 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.01it/s]
1/2 2.19G 0.04635 0.06968 0.01835 120 640: 88%|████████▊ | 14/16 [00:01<00:00, 10.25it/s]
1/2 2.19G 0.04637 0.06777 0.01839 76 640: 88%|████████▊ | 14/16 [00:01<00:00, 10.25it/s]
1/2 2.19G 0.04622 0.06747 0.01825 116 640: 88%|████████▊ | 14/16 [00:01<00:00, 10.25it/s]
1/2 2.19G 0.04622 0.06747 0.01825 116 640: 100%|██████████| 16/16 [00:01<00:00, 8.37it/s]#015 1/2 2.19G 0.04622 0.06747 0.01825 116 640: 100%|██████████| 16/16 [00:01<00:00, 9.33it/s]
Class Images Instances P R mAP50 mAP50-95: 0%| | 0/8 [00:00<?, ?it/s]
Class Images Instances P R mAP50 mAP50-95: 12%|█▎ | 1/8 [00:00<00:00, 7.10it/s]
Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 2/8 [00:00<00:00, 7.13it/s]
Class Images Instances P R mAP50 mAP50-95: 38%|███▊ | 3/8 [00:00<00:00, 6.68it/s]
Class Images Instances P R mAP50 mAP50-95: 50%|█████ | 4/8 [00:00<00:00, 6.66it/s]
Class Images Instances P R mAP50 mAP50-95: 62%|██████▎ | 5/8 [00:00<00:00, 6.84it/s]
Class Images Instances P R mAP50 mAP50-95: 75%|███████▌ | 6/8 [00:00<00:00, 6.74it/s]
Class Images Instances P R mAP50 mAP50-95: 88%|████████▊ | 7/8 [00:01<00:00, 6.84it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:01<00:00, 6.61it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:01<00:00, 6.73it/s]
all 128 929 0.785 0.629 0.738 0.498
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
0%| | 0/16 [00:00<?, ?it/s]
2/2 2.2G 0.04802 0.1227 0.01417 195 640: 0%| | 0/16 [00:00<?, ?it/s]
2/2 2.2G 0.04561 0.08766 0.01594 101 640: 0%| | 0/16 [00:00<?, ?it/s]
2/2 2.2G 0.04561 0.08766 0.01594 101 640: 12%|█▎ | 2/16 [00:00<00:01, 9.72it/s]
2/2 2.2G 0.04542 0.07617 0.01757 86 640: 12%|█▎ | 2/16 [00:00<00:01, 9.72it/s]
2/2 2.2G 0.04423 0.07265 0.01708 98 640: 12%|█▎ | 2/16 [00:00<00:01, 9.72it/s]
2/2 2.2G 0.04423 0.07265 0.01708 98 640: 25%|██▌ | 4/16 [00:00<00:01, 10.23it/s]
2/2 2.2G 0.04398 0.07078 0.01723 111 640: 25%|██▌ | 4/16 [00:00<00:01, 10.23it/s]
2/2 2.2G 0.04369 0.07246 0.01751 113 640: 25%|██▌ | 4/16 [00:00<00:01, 10.23it/s]
2/2 2.2G 0.04369 0.07246 0.01751 113 640: 38%|███▊ | 6/16 [00:00<00:00, 10.09it/s]
2/2 2.2G 0.04346 0.06956 0.018 102 640: 38%|███▊ | 6/16 [00:00<00:00, 10.09it/s]
2/2 2.2G 0.04342 0.06977 0.01773 118 640: 38%|███▊ | 6/16 [00:00<00:00, 10.09it/s]
2/2 2.2G 0.04342 0.06977 0.01773 118 640: 50%|█████ | 8/16 [00:00<00:00, 10.27it/s]
2/2 2.2G 0.04328 0.06999 0.01823 102 640: 50%|█████ | 8/16 [00:00<00:00, 10.27it/s]
2/2 2.2G 0.04326 0.06942 0.01802 113 640: 50%|█████ | 8/16 [00:00<00:00, 10.27it/s]
2/2 2.2G 0.04326 0.06942 0.01802 113 640: 62%|██████▎ | 10/16 [00:00<00:00, 10.14it/s]
2/2 2.2G 0.04364 0.06832 0.01798 118 640: 62%|██████▎ | 10/16 [00:01<00:00, 10.14it/s]
2/2 2.2G 0.04363 0.06963 0.01759 140 640: 62%|██████▎ | 10/16 [00:01<00:00, 10.14it/s]
2/2 2.2G 0.04363 0.06963 0.01759 140 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.36it/s]
2/2 2.2G 0.04389 0.06915 0.0175 107 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.36it/s]
2/2 2.2G 0.04385 0.0688 0.01785 98 640: 75%|███████▌ | 12/16 [00:01<00:00, 10.36it/s]
2/2 2.2G 0.04385 0.0688 0.01785 98 640: 88%|████████▊ | 14/16 [00:01<00:00, 9.54it/s]
2/2 2.2G 0.04383 0.06737 0.01852 62 640: 88%|████████▊ | 14/16 [00:01<00:00, 9.54it/s]
2/2 2.2G 0.04365 0.06745 0.01911 96 640: 88%|████████▊ | 14/16 [00:01<00:00, 9.54it/s]
2/2 2.2G 0.04365 0.06745 0.01911 96 640: 100%|██████████| 16/16 [00:01<00:00, 8.02it/s]#015 2/2 2.2G 0.04365 0.06745 0.01911 96 640: 100%|██████████| 16/16 [00:01<00:00, 9.14it/s]
Class Images Instances P R mAP50 mAP50-95: 0%| | 0/8 [00:00<?, ?it/s]
Class Images Instances P R mAP50 mAP50-95: 12%|█▎ | 1/8 [00:00<00:00, 7.91it/s]
Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 2/8 [00:00<00:00, 7.70it/s]
Class Images Instances P R mAP50 mAP50-95: 38%|███▊ | 3/8 [00:00<00:00, 7.29it/s]
Class Images Instances P R mAP50 mAP50-95: 50%|█████ | 4/8 [00:00<00:00, 7.22it/s]
Class Images Instances P R mAP50 mAP50-95: 62%|██████▎ | 5/8 [00:00<00:00, 7.08it/s]
Class Images Instances P R mAP50 mAP50-95: 75%|███████▌ | 6/8 [00:00<00:00, 6.85it/s]
Class Images Instances P R mAP50 mAP50-95: 88%|████████▊ | 7/8 [00:01<00:00, 6.53it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:01<00:00, 6.88it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:01<00:00, 7.00it/s]
all 128 929 0.819 0.627 0.747 0.504
3 epochs completed in 0.004 hours.
Optimizer stripped from /opt/ml/model/exp/weights/last.pt, 14.8MB
Optimizer stripped from /opt/ml/model/exp/weights/best.pt, 14.8MB
Validating /opt/ml/model/exp/weights/best.pt...
Fusing layers...
YOLOv5s summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs
Class Images Instances P R mAP50 mAP50-95: 0%| | 0/8 [00:00<?, ?it/s]
Class Images Instances P R mAP50 mAP50-95: 12%|█▎ | 1/8 [00:00<00:01, 5.90it/s]
Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 2/8 [00:00<00:01, 3.32it/s]
Class Images Instances P R mAP50 mAP50-95: 38%|███▊ | 3/8 [00:01<00:01, 2.74it/s]
Class Images Instances P R mAP50 mAP50-95: 50%|█████ | 4/8 [00:01<00:01, 2.66it/s]
Class Images Instances P R mAP50 mAP50-95: 62%|██████▎ | 5/8 [00:01<00:00, 3.31it/s]
Class Images Instances P R mAP50 mAP50-95: 75%|███████▌ | 6/8 [00:01<00:00, 3.88it/s]
Class Images Instances P R mAP50 mAP50-95: 88%|████████▊ | 7/8 [00:01<00:00, 4.44it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:02<00:00, 4.97it/s]
Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 8/8 [00:02<00:00, 3.91it/s]
all 128 929 0.819 0.627 0.746 0.503
person 128 254 0.9 0.669 0.807 0.523
bicycle 128 6 1 0.331 0.711 0.427
car 128 46 0.859 0.413 0.579 0.243
motorcycle 128 5 0.682 0.8 0.798 0.663
airplane 128 6 0.979 1 0.995 0.755
bus 128 7 0.748 0.714 0.779 0.659
train 128 3 1 0.659 0.863 0.532
truck 128 12 0.664 0.333 0.501 0.242
boat 128 6 1 0.301 0.519 0.252
traffic light 128 14 0.607 0.214 0.377 0.222
stop sign 128 2 0.792 1 0.995 0.772
bench 128 9 0.823 0.52 0.717 0.311
bird 128 16 0.885 1 0.991 0.651
cat 128 4 0.918 1 0.995 0.77
dog 128 9 1 0.653 0.901 0.693
horse 128 2 0.89 1 0.995 0.622
elephant 128 17 0.972 0.882 0.939 0.651
bear 128 1 0.71 1 0.995 0.995
zebra 128 4 0.885 1 0.995 0.93
giraffe 128 9 0.877 0.791 0.962 0.756
backpack 128 6 1 0.562 0.836 0.428
umbrella 128 18 0.79 0.629 0.877 0.529
handbag 128 19 0.959 0.158 0.337 0.188
tie 128 7 0.817 0.645 0.777 0.486
suitcase 128 4 0.866 1 0.995 0.601
frisbee 128 5 0.735 0.8 0.8 0.627
skis 128 1 0.827 1 0.995 0.497
snowboard 128 7 0.85 0.714 0.867 0.544
sports ball 128 6 0.685 0.667 0.668 0.346
kite 128 10 0.835 0.508 0.628 0.22
baseball bat 128 4 0.521 0.25 0.388 0.171
baseball glove 128 7 0.763 0.429 0.47 0.276
skateboard 128 5 0.725 0.54 0.648 0.479
tennis racket 128 7 0.801 0.429 0.559 0.344
bottle 128 18 0.588 0.333 0.601 0.31
wine glass 128 16 0.735 0.875 0.89 0.448
cup 128 36 0.902 0.667 0.839 0.52
fork 128 6 1 0.311 0.439 0.302
knife 128 16 0.829 0.625 0.704 0.393
spoon 128 22 0.828 0.439 0.637 0.363
bowl 128 28 1 0.63 0.763 0.573
banana 128 1 0.809 1 0.995 0.302
sandwich 128 2 1 0 0.448 0.383
orange 128 4 0.829 1 0.995 0.738
broccoli 128 11 0.824 0.364 0.491 0.356
carrot 128 24 0.685 0.625 0.713 0.487
hot dog 128 2 0.547 1 0.663 0.614
pizza 128 5 1 0.792 0.962 0.77
donut 128 14 0.674 1 0.946 0.799
cake 128 4 0.774 1 0.995 0.846
chair 128 35 0.612 0.632 0.619 0.319
couch 128 6 1 0.646 0.826 0.527
potted plant 128 14 0.903 0.786 0.875 0.508
bed 128 3 1 0 0.863 0.532
dining table 128 13 0.804 0.317 0.621 0.407
toilet 128 2 0.857 1 0.995 0.796
tv 128 2 0.751 1 0.995 0.796
laptop 128 3 1 0 0.913 0.548
mouse 128 2 1 0 0.0907 0.0454
remote 128 8 1 0.617 0.629 0.513
cell phone 128 8 0.722 0.332 0.453 0.262
microwave 128 3 0.848 1 0.995 0.843
oven 128 5 0.667 0.4 0.43 0.298
sink 128 6 0.272 0.167 0.338 0.252
refrigerator 128 5 0.672 0.8 0.81 0.558
book 128 29 0.749 0.206 0.367 0.168
clock 128 9 0.762 0.778 0.879 0.689
vase 128 2 0.439 1 0.995 0.895
scissors 128 1 1 0 0.166 0.0332
teddy bear 128 21 0.85 0.571 0.788 0.506
toothbrush 128 5 0.826 1 0.995 0.618
Results saved to #033[1m/opt/ml/model/exp#033[0m
2023-06-30 08:57:53,434 sagemaker-training-toolkit INFO Waiting for the process to finish and give a return code.
2023-06-30 08:57:53,434 sagemaker-training-toolkit INFO Done waiting for a return code. Received 0 from exiting process.
2023-06-30 08:57:53,435 sagemaker-training-toolkit INFO Reporting training SUCCESS
2023-06-30 08:58:07 Uploading - Uploading generated training model
2023-06-30 08:58:07 Completed - Training job completed
Training seconds: 427
Billable seconds: 427